Acadiana 500 Annual Tricycle Race

Fast Pedal Engineers

Andre Signoret Team Leader & Computational Director Department of Mechanical Engineering University of Louisiana at Lafayette C00487417 Katie Kaliszeski Finance Director & Testing Director Department of Mechanical Engineering University of Louisiana at Lafayette C00437794

Matthew Dubea Communications and Fab. Director Department of Mechanical Engineering University of Louisiana at Lafayette C00116021

Dr. Yonas Niguse Faculty Advisor Department of Mechanical Engineering University of Louisiana at Lafayette Mrs. Hanna Pellerin Event Coordinator Acadiana 500 Tricycle Race Metal Shark Boats

Organizational Structure

What is Acadiana 500?

• Acadiana 500 Tricycle Race

- Annual race New Iberia City Park
 - Founded in the 1980's
 - 40 year hiatus started back up 2024, 2025
- Teams of 8 design and build a tricycle
- Teams then relay race in a circuit

Figure 1: Acadiana 500 Tricycle Race Flyer

Figure 2: 2025 Acadiana 500 Race

Requirements

Objective:

- Design and build a tricycle safe, strong, fast, light weight, and that meets all dimensional limits
- Rules and penalties:
 - Maintain constant motion
 - Penalty transition zones
 - Handicap (based on age)

#	Acadiana 500 Rule / Constraint	Dimensional Limit (in)
1	Seat-top height (ground \rightarrow top, padded)	22–24 or \le 25 (padded)
2	Highest point on tricycle	≤ 32
3	Handlebar & rear-axle width	\leq 20 end-to-end
4	Crank-arm radius	\leq 4
5	Outside pedal-to-pedal span	≤ 24
6	Front-wheel center \rightarrow outer pedal tip	≤ 12
7	Max pedal envelope (height \times width)	$\leq 6 \times \leq 6$
8	Rear-axle track / overall trike width	17–20
9	Wheelbase	≤ 24
10	Front-wheel diameter	≤ 20
11	Propulsion method	No gears, motors, or chains
12	Braking	Foot-drag only in transitions

Tricycle Specifications

5

Concept Generation

Figure 5: Design Iteration 1

Figure 7: Design Iteration 3

Figure 6: Design Iteration 2

Figure 8: Actual Tricycle

Concept Selection

++

++

++

++

++

•	House	of	Qual	lity
---	-------	----	------	------

			$\langle \rangle$			•	*	· / \	•	• / / '	"/ \			1 1
		٦g tics	ngth,		bility	ngth	Load	FoS)	urs)	tress si)	(lbf)	gui		Strong
tance		neerir cteris	(th, Lei t (in)	ight (lb	Adjusta 1)	d Streı ii)	tt Max ii)	afety (]	Time (1	Axle S oad (ps	stance	ufacturi (\$)		Medium
Import		Engi Chara	all Wid Heigh	otal We	Height A (ir	ne Yiel (ps	Stress a (ps	or of S:	embly	bility / Max L	ng Resi	al Manı Cost	Δ	Weak
	Customer Requirements		Over	T	Seat H	Fran	Axle	Fact	Ass	Dura	Rolli	Tot		
10	Ensure rider saf	fety under all conditions		Δ	۵	۲		۲	۲			۵		
9	Stable and	responsive steering		Δ			۲	۲	۵	۲			▲	Mavimize
10	Allow con	nstant movement					۲			۲				Maximize
8	Pneumatic tire	s for shock absorbance					۲	۲		۲	۲	۵		
8	Coaster us	e in front assembly						۲					·	Minimize
10	Front w	heel pedal drive										۵		
10	No motor	s, chains, or gears											х	Target
10	Achieve constan	nt high speeds and good									۲			Talget
9	Ergonomic seatin	g and rider comfortability	۵		۲			۲						
10	Maintain dimer long	nsions: ≤20" wide, ≤24" g, ≤32" high	۲						۲				++	Strong Positive
10	Seat height	≤ 25" (W/ Padding)	۲		۲				۲		Δ			
10	Supporting vari	ety of rider weights and sizes							۲				+	Positive
8	Ass	sembly time							۲					
10	Stress with	standing capability		Δ		۲		۲					-	Negative
10	User fri	endly operation		۲				Δ						
8	Minimiz	ze design weight	۵	۲					۲			۵		Strong Nogativo
7	M	inimal cost							۲					Strong Negative
10	Meet intended fu	inctional and operational					۵		۲	۵	۲			I

Concept Selection

Eva	aluation matrix	X		1	PA
Importanace	Customer Requirements				00
10	Ensure rider safety under all conditions	9	7	9	9
9	Stable and responsive steering	9	7	6	10
10	Allow constant movement	10	9	9	9
8	Pneumatic tires for shock absorbance	9	8	7	9
8	Coaster use in front assembly	8	3	7	9
10	Front wheel pedal drive	10	10	10	10
10	No motors, chains, or gears	10	10	10	10
10	Achieve constant high speeds and good acceleration	9	7	8	8
9	Ergonomic seating and rider comfortability	7	9	9	9
10	Maintain dimensins: ≤20" wide, ≤24" long, ≤32" high	8	7	7	10
10	Seat height \leq 25" (W/ Padding)	9	8	7	10
10	Supporting variety of rider weights and sizes	8	6	8	9
8	Assembly time	8	9	7	7
10	Stress withstanding capability	9	6	9	9
10	User friendly operation	10	8	8	9
8	Minimize design weight	9	6	8	9
7	Minimal cost	5	7	7	8
10	Meet intended functional and operational objectives	9	7	8	10
	Total	1461	1251	1346 8	1529
Rel	ative Total = Total/Number of Criteria	0.81	0.70	0.75	0.85

Final Design

Figure 9: Final Tricycle Design Drawing

#	Acadiana 500 Rule / Constraint	Dimensional Specification (in)	FPE Design (in)
1	Seat-top height (ground \rightarrow top, padded)	22–24 or \le 25 (padded)	<mark>23–24.2 (pad)</mark>
2	Highest point on tricycle	≤ 32	<mark>31.5</mark>
3	Handlebar & rear-axle width	≤ 20	<mark>19.75</mark>
4	Crank-arm radius	≤ 4	4
5	Outside pedal-to-pedal span	≤ 24	17.5
6	Front-wheel center → outer pedal tip	≤ 12	8.75
7	Max pedal envelope (height × width)	\leq 6 × \leq 6	<mark>4 × 5</mark>
8	Rear-axle track / overall trike width	17–20	<mark>19.7</mark>
9	Wheelbase	≤ 24	<mark>23.75</mark>
10	Front-wheel diameter	≤ 20	<mark>20</mark>

Material Selection

Figure 10: SolidWorks of Reused Parts (post modification)

Figure 11: Rear Axle Sub Assembly

Component(s)	Material	Ultimate Tensile Strength (psi)	Yield Strength (psi)	Machinability	Weldability	Density (lb/in ³)	Weight Ratio
Frame, Fork, Stem, Handlebars	AISI 1020 Steel	60900	50800	65%	Excellent	0.284	37.14%
Rear Axle Center Tube	AISI 4130 Steel	81200	66700	72%	Very good	0.284	8.57%
Rear Axle Center Bushings	AISI 1018 Steel	63800	53800	78%	Excellent	0.284	0.86%
Rear Axle Stub (Wheel Bushing)	AISI 4140 Steel (Heat <mark>Treated</mark>)	<mark>148000</mark>	95000	77%	Moderate	0.284	1.43%
Spacers	UNS C36000 <mark>Brass</mark>	55100	44200	<mark>100%</mark>	Not welded in design	0.307	0.46%
Fasteners, Bolts	SAE J429 Grade 5 Steel	120000	92000	65%	Not welded in design	0.284	0.71%

Analytical Calculations

1. To determine the angle at which the tricycle tips over, the following formula is used:

$$\theta_{\rm tip} = \arctan\left(\frac{\rm Rear Width}{\rm CoG Height}\right) = \arctan\left(\frac{19.5}{23}\right) \approx 22.98^{\circ}$$

The tricycle can lean up to 22.98° before tipping occurs.

2. To calculate the total mass of the tricycle and rider combined, we use the formula:

$$m = \frac{weight}{gravity} = \frac{204.5 \text{ lbs}}{32.2 \text{ ft/s}^2} = 6.356 \text{ slugs} \text{ or } 42.15 \text{ kg}$$

Where:

- Total Weight = 204.5 lbs (Tricycle: 34–35 lbs, Rider: 170 lbs)
- Gravity = **32.2** ft/s²
- The combined mass of the tricycle and rider is 6.36 slugs (42.15 kg).

Cross-sectional Area = $A = \pi r^2$, with the seat post at a diameter of 2 cm (r=0.39in=1cm) $A = \pi (1^2) = 3.1416 \ cm^2 = 3.1416 \times 10 - 4m^2$

Now calculate the applied stress:

$$\sigma = \frac{A}{F} = \frac{850}{3.1416 \times 10^{-4}} = 2.71 \times 10^6 Pa = 2.71 MPa$$

Assuming a uniaxial stress, the Von Mises stress will be the same:

$$\sigma_{VM} = 2.71 MP$$

- 3. Max Stress (Von Mises): The Von Mises stress is used to predict the yielding of materials under loading conditions.
 - Max Stress from FEA: 2.795e08 N/m²
 - The material used for the frame has a yield strength of **6.204e08** N/m².

4. The **Factor of Safety** (**FoS**) is a measure of how much stronger the material is compared to the max expected load. The factor of safety is calculated using the following formula:

$$\mathbf{FoS} = \frac{\sigma_{yield \ of \ material}}{\sigma_{VonMisesStress}} = \frac{6.204 \ *10^8}{2.795 \ *10^8} = \mathbf{2.22}$$

The FoS = 2.22; the frame can withstand 2.22 times the max stress calculated by the FEA. This confirms that the frame is structurally safe.

FEA & Stress Analysis

• Input Forces (FEA):

- 1. Seat Post: 850 N
- 2. Rear Axles (2): 450 N
- 3. Handlebar: 150 N
- Von Misses Stress (FEA):
 - Maximum Stress: 2.795e08 Pa
- Frame Failure?
 - Maximum Stress Comparison: 6.204e08 Pa >>2.795e08 Pa

The maximum Von Mises stress is smaller than the yield strength, so **the frame will not fail under this loading condition.**

Figure 12: FEA Analysis on Frame

Manufacturing & Assembly

Processes used during manufacturing & assembly:

- <u>TIG Welding</u>:Used in frame and seat support rails for precision and strength.
- <u>CNC Machining</u>: Machined rear axle sleeve, stem extension, and seat anchor points to ensure tight tolerances and a precise fit.
- <u>Lathe & Press</u>: The rear axle bushings and brass spacers were fabricated on a lathe and press to ensure proper alignment and durability.

Figure 13: Final Design Exploded View

Figure 16: Rear Axle Tire Bushing Figure 17: Front Fork Attachment

Testing

Track information:

- Length: 0.66 miles
- 8 Transition zones (30 ft)

Figure 18: Acadiana 500 Tricycle Track

Gantt Chart

		Pha	ise 1	(Fall	202	4)		Phase 2 (Spring 2025)																			
Week	1	2	3	4	5	6	7	8	9	10	Week	11	12	13	14	15	16	17 1	18	19	20	21	22	23	24	25	26
Finaliza group											Meet with Hanna Pellerin																
contractive group,											to discuss phase 2 plan																
established team name,											Source all parts to order																
and assigned totes for all											Verify all parts being																
members											ordered with Hanna																
Establish means of											Pellerin																
communication											Purchase all																
Meet with Hanna Pellerin											unmanufacturable																
Research on tricycle											materials																
designs, best materials											Meet with Mr. Jeff to																
to utilize, and how											discuss required																
wheels size impacts											manufactured parts and																
acceleration, stability.											machining process																
and top speeds											Create new parts, using																
Rough draft for a parts											SolidWorks, necessary for																
list											updates to be made to																
											tricycle model																
Team meeting											Create new SolidWorks																
Receive SolidWorks											drawing of edited tricycle																
Weld course											design																
Sketch front tire to add to											Meet with Mr. Jeff to																_
assembly											manufacture parts																
Create table to show											Perform FEA on																
create table to show											SolidWorks design																
optimal dimensions for											Participate in local news																
tricycle performance											interview																
Design development on											Drive to New Iberia to																
front axle of tricycle											visit location of race																
created on SolidWorks																											
Einaliza norta in											Finalize all manufactured																
SolidWorks (groats											parts with Mr. Jeff								_			-				_	
assembly)											Work on final																
											presentation, poster, &																
rind sponsor		-	-		-						report								_			_					
											Practice riding tricycle at																
Perform FEA analysis on											race location								_			_					_
SolidWorks											Make any necessary																
Finalize each design						L					adjustments before the																
		Color	Key			4					event											-+	_				-+
			Complet	ed							Final meeting with Hanna																
			<u></u>			1					Pellerin to give final																
			In-Progre	ess		-					update								_								-+
			Phase 1 (Fall 202	24)	_					Prepare for final race																
			Phase 2 ((Spring 2	2025)						Race in final event!					1											
			Racing V	Veek												13	J										

Gantt Chart Summarized by Major Achievements

							-					•	_	. • 1													LAFATETT
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Finalize group, establish																											1
team name, and assigned																											1
roles for all members																											1
Research on tricycle																											l
designs, best materials																											C.L. K.
to utilize, and how																											Color Key
wheels size impacts																											Completed
acceleration, stability,																											
and top speeds																											In-Progress
Sketch front tire to add to assembly																											Phase 1 (Fall 2024
Design development on																											Phase 2 (Spring
front axle of tricycle																											2025)
created on SolidWorks																											Desing West
Finalize parts in																											Kacing week
SolidWorks (create																											1
assembly)																											1
Find sponsor																											1
Perform FEA analysis																											1
on SolidWorks																											l
Finalize each design																											l
Purchase all																											1
unmanufacturable																											1
materials																											1
Create new parts, using																											1
SolidWorks, necessary																											1
for updates to be made																											1
to tricycle model																											1
meet with Mr. Jell to																											1
Porform FFA on																											1
SolidWorks design																											1
Participate in local news																											1
interview																											1
Finalize all																											1
manufactured parts																											1
with Mr. Jeff																											1
Practice riding tricycle																											l
at race location																											l
Race in final event!																					1	6					1

Results

Round	Team	Time	Penalties	Final Time
	Fast Pedal ULL	3.41.87	0	3.41.87
	Baby Sharks	3.35.17	.10	3.45.17
	Gym Class Heros	3.45.43	0	3.45.43
	The Loan Rangers	3.36.08	.10	3.46.08
Qualifier 1	Baits Motel	3.46.63	.10	3.56.63
	Heavy Metal Sharks	3.50.38	.20	4.10.38
	Pedal Pushers	4.15.63	.20	4.35.63
	Amped Up	4.18.37	.30	4.48.37
	Pecan Peddlers	4.40.79	.50	5.30.79
				Final
Round	Team	Time	Penalties	Time
	Fast Pedal ULL	3.38.03	0	3.38.03
	The Loan Rangers	3.35.25	.10	3.45.25
	Gym Class Heros	4.01.79	0	4.01.79
	Baby Sharks	3.40.87	.30	4.10.87
Qualifier 2	Baits Motel	3.52.60	.20	4.12.60
	They see Me Rolling	3.58.15	.20	4.18.15
	Heavy Metal Sharks	3.49.58	.30	4.19.58
	Amped Up	4.07.83	.30	4.37.83
	Pedal Pushers	4.28.22	.30	4.58.22
				Final

Round	Team	Time	Penalties	Final Time
	Fast Pedal ULL	3.33.00	.20	3.53.00
	Baby Sharks	3.46.20	.10	3.56.20
Somi Final	Heavy Metal Sharks	3.48.93	.10	3.58.93
Senn-r mai	Baits Motel	3.51.69	.10	4.01.69
	The Loan Rangers	3.42.07	.20	4.02.07
	They see Me Rolling	3.53.15	.20	4.13.15

Round	Team	Time	Penalties	Final Time
Final	Fast Pedal ULL	3.31.17	0	3.31.17
rmai	Heavy Metal Sharks	3.48.36	.20	4.08.36

• 1st place

- Winning time: 3 min 31 s (won all races)
- Least amount of penalties received
- Fastest track time of the day
- Completed 4/5 races without any penalties
- Average team speed: 11.3 mph

Figure 19: FPE Trophy Ceremony

Bill of Materials

Purchased Components — Cost and Source Summary

	Item / Sub-assembly	Qty	Material	Cost (\$)	Source	Note
Re-used	-					
1	Bike Frame (triangular)	1	1018 Steel tube	0	Reused MTB	TIG welded
2	Handle-bars (straight)	1	1018 Steel tube	0	Reused MTB	Narrowed to 19 in
3	Stem (pre-extension)	1	1018 Steel	0	Reused MTB	Modified & Extended (TIG)
4	Rear tires	2	Steel and Rubber	0	Esport	Provided by business
Purchased						
4	20 in front-wheel assembly	1	Steel / 6061-T6	31.99	Razer DXT (razor.com)	(hub + cranks + coaster)
5	Titanium pedal extenders, 0.79 in	2	Titanium Alloy	35.99	Amazon	Increases pedal clearance
6	Aluminum flat pedals (pair)	2	6061-T6 / Steel	27.99	Amazon	¹ /2-20 thread
7	Handle-bar grips (pair)	2	ABS Plastic	6.98	Amazon	5.2 in length
8	Banana saddle w/ support rails	1	Polyurethane / Carbon Fiber / 1018 Steel	55.99	Amazon	18 x 4.5 in
9	"Full Petal Engineers" Team Jerseys	9	Cotton	52.91	Mrs. Kaliszeski	S, M, L
Machined						
10	Stem extension (+7 in)	1	1018 Steel	0	UL Shop - Mr. Jeff	1.5 h lathe + 0.5 h weld
11	T-anchor (Seat Security)	1	6061-T6	0	UL Shop - Mr. Jeff	1.5 h 3-axis mill
12	Center tube (rear axle sleeve)	1	4130 Steel	0	UL Shop - Mr. Jeff	0.75 h lathe
13	Rear-axle bushing set (stepped axle + brass)	2	4130 Steel / C360	0	UL Shop - Mr. Jeff	2.0 h lathe + press
14	Brass Spacers	2	C360	0	UL Shop - Mr. Jeff	0.5 h lathe
15	Bushing-to-frame collars	2	1018 Steel	0	UL Shop - Mr. Jeff	0.5 h lathe
16	Fork bearing blocks	2	1018 Steel	0	UL Shop - Mr. Jeff	5 h mill + drill/tap
17	Side stiffener plates	2	1018 Steel plate	0	UL Shop - Mr. Jeff	Included in 5 h weld total
18	Seat support railing	2	1018 Steel tube	0	UL Shop - Mr. Jeff	Braced with screws (Side Plate and Sৰ্ঞ্জ)
			Total Cost	<mark>211.94</mark>		

Potential Impacts

Figure 20: FPE Racer Katie

- All money raised during the event is **donated** to **boys' and girls' groups** in the New Iberia area
- The team gained further **experience** in:
 - SolidWorks design
 - Manufacturing and Assembly Process
 - Working with sponsors and meeting customer deadlines and requirements
 - FEA analysis
 - Utilizing kinematic equations to perform necessary calculations

Acknowledgments

- Hanna Pellerin: Event Organizer
 - Aided in answering all team inquiries
- Capitol Cyclery
 - Provided information on how tricycles are manufactured
- Mr. Jeff: MCHE Lab Professor
 - Guided the team in the Phase 2 process of assembly
 - Aided in manufacturing all necessary parts for the tricycle assembly
- KATC News
 - Covering the teams progress over a news segment/article
 - https://www.katc.com/lafayetteparish/mechanical-engineering-students-at-ulbuild-tricycle-for-acadiana-500-race
- Raising Canes
 - Sponsored the team's registration fee: \$250
- E-Sport Guatemala
 - Provided rear wheels for tricycle

Figure 21: FPE Team after Semi-Final Race

References

- MatWeb, LLC. *Material Property Data*. MatWeb, <u>www.matweb.com</u>. May 2025.
- Acadiana 500 Race Rules. (2024). Acadiana 500 Official Race Rules. Retrieved from [PDF file]. (Sept. 4, 2024).
- Acadiana 500 Tricycle Race. (2024). Acadiana 500 Tricycle Specification Sheet. Retrieved from [PDF file]. (Sept. 2, 2024).
- Acadiana 500 Race Rules. (2024). Acadiana 500 Official Race Rules. Retrieved from [PDF file]. (Sept. 1, 2024).
- Brown, D., & Miller, R. (2019). Engineering principles in bicycle design: Dynamics and material selection. International Journal of Mechanical Engineering Education, 47(3), 222-234.
- Smith, J., & Andrews, L. (2021). Structural analysis and optimization in tricycle design for durability and performance. Journal of Transportation Engineering, 147(10), 04021118.
- Martin, P., & Nguyen, H. (2020). *Material science considerations in engineering applications: Aluminum and steel in load-bearing frames. Materials Science and Engineering*, 557, 89-99.

UNIVERSITY # LOUISIANA LAFAYETTE

Thank you for listening!

Questions?

Figure 22: FPE Team after winning Acadiana 5222